【译文连载】《更好的解释(数学篇)》——第十一章

欧拉公式 欧拉公式看起来完全让人摸不着头脑:

eix =cos(x)+isin(x)

这就是说:

e=cos(π)+isin(π)=-1+i(0)=-1

这个结果是如此的不真实,所以我打算再把它重写一次:

e=-1

这个方程式把虚指数与正余弦函数联系起来。它是怎么把一个像Pi这样的无限不循环小数这么简单的就变为-1了呢?这能有一个直观化的解释吗? 这里不得不提到19世纪的数学家Benjamin Peirce:“这绝对是个悖论;我们不可能理解它,我们甚至都不知道它是什么意思,但是我们既然证明了它,那么我们就知道它是真的。” 这种态度让我大为火光。我们应该直接举手投降,然后死记硬背吗?不!

欧拉公式描述了沿着圆运动的两种方式。仅仅是这样吗?最有魅力的公式之一就是转圈圈?没错——今天我们就来看看这是为什么。

11.1 理解cos(x)+isin(x) 方程式符号承载的东西太多了。有时候它只是表示“把一个东西变为另一个东西”(比如说x=3)而已。而另一些时候它只是表示“描述同一事物的两种不同方法”(比如说根号负一等于i)而已。 欧拉公式就是在描述两种描述统一现象的等价方法:转圈圈。为了达到我们的目的,假设你前进了x弧度:

  * cos(x)就是x轴的坐标(水平距离) * sin(y)就是y轴的坐标(竖直距离) cos(x)+isin(x)是一种很聪明的办法,它把两个坐标整合到了一个复数中。“复数有两个维度”的类比帮助我们很好的把这些即使作了二维平面上的一个点。记得我们在第一章给圆下的定义吗?现在我们来加入一些新的东西。 当我们写下x=π(在这个例子中表示让x的指为π)时,就是说我们沿着单位圆运动。因为圆周长是2π,所以我们走了一半的距离。 从1开始前进π弧度,我们的起始点在单位圆上,终点就是-1。没有虚部(y轴坐标),因为-1就在实数轴上。如果我们是令x=-π,沿顺时针方向前进的话,我们得到相同的结果:-1。 很酷吧。所以欧拉公式就是说e

ix 跟(cos(x)+isin(x))表示相同的沿着单位圆进行的运动过程。现在我们来看看e是怎么做到这一点的。

11.2 什么是虚部增长呢? 用x、y坐标表示虚数需要一些技巧,但是是完全可行的。但是虚指数到底是什么意思呢? 让我们再回想一下那台“创世界”机器。3

4 这样的东西表示“以3倍的增长率增长4秒”。以增长者的角度来看:

34 =(eln(3))4=eln(3)·4

增长者只知道它现在的增长率(ln(3),所有的复合增长完成后就变为3),它想让我们把增长率扩大到4倍。那么乘以4就可以了:e

ln(3)·4 =81。 现在,我想问问为什么可以扩大四倍呢?那是因为乘以4(一个实数)就表示扩大四倍。但是虚数就不一样了:当乘以一个虚数后,其实是把结果旋转了。

11.3 把增长旋转一下 通常的增长就是推动一个数字沿着一个固定的方向前进:2×3就是把2沿着原始方向,把它推到3倍大(6)。

  但是一个虚数倍的增长会把你的“增长”旋转90度到虚轴上!简单来说就是一个与原来方向正交的推动并不会让你的增长速度变快或变慢——它是要把你旋转一下!任何实数乘以i并不改变大小,只会改变方向。 直观的来看,当我们在讨论虚增长时,实际上就是在说: * 虚增长:当我增长的时候,不要把我推向前或向后,而是要旋转我。 一个常数旋转并不会改变你的大小——你只是会转圈圈而已。

11.4 但是我们不是应该越转越快吗? 不是的。我来跟你解释一下:常规的增长让你在原来方向上前进或后退。所以你从1开始,到2,4,8,16,你每次都是乘以一个2,然后你依然是个实数。 但是纯粹的虚增长只是让你旋转。让我们假定你在i方向的增长率是100%:你保持一个恒定的推动,所以最后的效果也就是旋转而已。 1秒之后你在90度方向(i),2秒后,你在180度方向(i

2 =-1),这样不断进行。虚增长不进行复合!如果你的增长率是一个较大的虚数(2i),你可以认为这个增长需要两倍长的时间(还记得e把时间与增长率合并到一起吗?)。但是它还是在一个垂直的方向进行推动,而这不会改变你的速度。 现在,如果你的增长率是个复数(a+bi),那么实数部分就跟常规增长一样表示你是增长还是缩少,而虚数部分表示将把你旋转。但是欧拉公式(正如它的形式一样)是关于纯粹的虚增长(eix)的。我们接下来的讨论会更复杂一些。

11.5 追根溯源 让我们凑近点看看。回忆一下关于e的这个定义:

  1/n表示在我们的周期内赚到的利润。我们假设利润是实的——但是如果它是虚的呢?     现在我们的利润被推向了90度方向,但是这不影响我们的长度。(这是一个比较难理解的概念,因为这就像我们在一个比较长的斜边下构造一个三角形。我们在处理一个极限;斜边有一个在我们误差范围内难以发现的增加。我们需要微积分来帮我们弄清楚,但是这个还是改日再谈吧)。 我们每次把i单位的增长应用到无穷小量上。每一次应用都是轻轻把它推向90度方向。没有所谓的“越来越快”的旋转,因为它与增长方向始终保持垂直,它只是推向一个新的方向而已(+1角度而已)。 所以我们发现了另一种表示圆的方法! * 圆周运动:始终沿着90度的方向进行旋转(虚增长率) 那么,欧拉公示就是在说“指数的虚增长最后就是一个圆的轨迹”。而这个轨迹跟用正余弦函数表示的虚数画出来的轨迹一样。在这里用“指数”可能有些不恰当,因为我们沿着一个圆始终做着匀速运动(最好还是称为“连续改变”)。但是我们现在主要面对的是增长就是一个复合的,累积的增长。

11.6 一些例子 你现在可能不相信我。以下是一些帮助你直观化思考的示例。

示例:ei x在哪里呢?哈哈,它就是1.直观的来看,不需要用计算器我们就知道这是在说“沿着单位圆前进1弧度”: ei =cos(1)+isin(1)=0.5403+0.8415i 不是一个简洁的数字,但是依然有效。输入这些的时候记得把你的计算器调到弧度模式。 示例:3i 这就需要一些技巧了——这不是我们通常见到的形式。但是记住,3i =1·3i ——真正的问题就是“我们怎么把1做变换”呢? 我们希望有一个最后增长率为3倍或者说即时增长率为ln(3)的增长,但是,i的把ln(3)变成了ln(3)·i:

3i =(eln(3) )i  = eln(3)·i

我们本来以为我们只是转换一个ln(3)就够了(因为e是2.718,所以这个比100%要快一些)。但是,哦,i让我们团团转:现在我们把它转换成了虚增长,这就意味着我们在旋转。如果i是一个常规数字比如说是4,我们就会得到一个4倍快的增长。现在我们的增长速度是ln(3),不过是在一旁增长。 我们应该能够想到一个单位圆上的复数——不会改变我们的大小。解这个方程:

3i =eln(3)·i =cos(ln(3))+isin(ln(3))=0.4548+0.8906i

示例:ii 在之前见到这个家伙会直接把我吓跑,很有可能还带着泪水。但是现在我们可以把它做一些变换:ii =1·ii 。我们从1开始变化。就像解决3i 那样,以i为底时现在的即时增长率是多少呢? 呃,通常我们会用ln(x)来得到在最终达到x的即时增长率。但是对于虚增长率?我们需要做些改变。 为了从1变到i,我们需要旋转。转多块呢?好吧,我们需要在一单位时间内转过90度角(Pi/2弧度)。所以我们的增长率就是Pi·i/2(记住我们是要旋转所以必须乘以一个虚增长率)。 这样就可以说得通了:在一单位时间内,把1变到i,我们应该旋转Pi/2弧度(90度角)。 这个解释了底,但是对于指数呢? 另一个i告诉我们改变增长率(是的,我们应该花多长时间转动就可以结束了),底为i表示以Pi·i/2的速度进行旋转:

Pi·i·i/2=Pi/2·(-1)=-Pi/2

i被消去了,增长率又变为了实数!我们把增长率转到了一个相反的方向。这意味着我们在缩小——我们应该能够想到i

i 就是让事物变小。事实确实如此(在Google中搜索“i^i”来利用它的计算功能) 先喘口气:你应该可以直观化的了解到,虚数底与虚指数的行为是怎样的。 示例:(ii )i 想要更多?如果你坚持的话,首先我们知道括号内的增长率等于多少:

ii =(ePi·i/2 i =e-Pi/2

我们得到了一个Pi/2的负增长(缩小)。现在我们用i来修改一下它:

(ii )i =(e-Pi·i/2 )i =e-Pi·i/2

我们得到了一个负旋转!我们每单位时间将要以Pi/2的速度进行旋转。转多长时间呢?其中暗示了1个单位时间;一个单位时间的旋转就是-i:

ii =0.2078……

(ii )=-i

而且,看看整个过程,如果我们给它平方一下的话:

((ii )i )2 =-1

这就好比是两倍的旋转:2是一个实数,所以它让我们的旋转翻倍到-180度。或者也可说它做了两次-90度的旋转。 最后得瑟一下,它们确实都是些奇怪的指数,但是通过类比我们可以很轻松的把它们搞定。

11.7 混合增长 我们可以既有实数增长也有虚数增长:实数增长改变大小,虚数增长进行旋转:

  一个复数增长率(a+bi)就是混合了实数增长与虚数增长。实数部分就表示“每秒增长100%”而虚数增长就是“旋转b秒”。记住,虚数并不能把不同的方向进行复合,所以它只是线性相加。 根据这个想法,我们可以把任何点用不同大小的圆(a+bi)表示出来!半径就是ea 而角度由eib 决定。这就像把数字放到“创世界”中两次:一次你让它的大小发生变化(一秒),另一次就是让它的角度旋转(b秒)。或者你可以先旋转再增长! 我们想知道得到6+8i的最终倍数所需要的增长数。这就是在问一个复数的自然对数:我们如何把e变为6+8i? * 半径:我们需要一个多大的圆?大小是10.这就意味着需要花ln(10)=2.3秒的时间来达到这个数值 * 旋转的角度:那个点的角度是多少?我们可以使用反三角函数来计算:arc tan(8/6)=53度=0.93弧度。 * 组合结果:ln(6+8i)=2.3+0.93i

11.8 为什么真很有用? 最起码的,欧拉公式给了我们一个另一种方法来描述沿着圆的运动。当然我们也可以用正余弦函数来表示——为什么如此特别呢? 这只是角度不同而已。正余弦函数运动就是在水平坐标和垂直坐标中运动的点而已。

  欧拉公式使用极坐标——你的角度与距离多少?再一次的,这是两种描述运动的方法而已: * 网格系统:向东3个单位,向北4个单位 * 极坐标:在71.56角度上移动5个单位 这取决于是哪种问题,才能那个决定极坐标还是矩形坐标哪个更有用。欧拉公式可以让我随意的进行转换。同样的e

ix 转化为正余弦函数,我们可以把任意的三角公式转为以e表示的变量(这是很方便的——不需要去记忆sin(a+b))。 从实用角度来看:每一种旋转,每一种增长,甚至是每一个数字(复数或是虚数)都是e的变化,这真的很神奇。欧拉公式被认为是数学中最优雅的公示之一——而且确实可以理解其中的奥妙。

3则回应给“【译文连载】《更好的解释(数学篇)》——第十一章”

  1. yt b说道:

    (i^i)^i公式写错了

  2. suith27说道:

    第二个公式

    eiπ cos(π)+isin(π)=-1+i(0)=-1

    少了个等号:

    eiπ =cos(π)+isin(π)=-1+i(0)=-1
    ———————————————-

    11.2 什么是虚部增长呢?

    34 =(eln(3) )=eln(3)·4

    中间的等式 括号外少了[4]:

    34 =(eln(3) )4=eln(3)·4

    ———————————————-

    排版被吃掉了 -,-

发表评论